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a b s t r a c t

We report here a simple and efficient preparation of 1H-azepin-5(2H)-ones and their unexpectedly facile
isomerization to 1H-azepin-5(4H)-ones under mildly basic reaction conditions.

� 2010 Elsevier Ltd. All rights reserved.
heptane

NH3CO

OTMS

CO2t-Bu

N

O

CO2t-Bu

H

H+
N
H

O

CO2t-Bu

1
30%

N

O
t-BuO

OCH3

TMSO

2

Scheme 1. Diels–Alder cycloaddition of 2H-azirine-3-carboxylate t-butyl ester
(Alves and Gilchrist, 1998).
During the course of the total synthesis of a complex alkaloid,
we had need of a substituted 1H-azepin-5(2H)-one. Azepinones
are accessible via the Diels–Alder cycloaddition of electron rich
dienes and 2H-azirine-3-carboxylic acid esters (Scheme 1).1,2 These
reactions proceed under relatively mild conditions and owe their
remarkable success to the combined effects of a highly strained
carbon–nitrogen double bond and an electron-withdrawing
carboxylate group.

In the case of unsubstituted 2H-azirine-3-carboxylic acid esters,
it was reported that some cycloadducts underwent a strain-relieving
scission of a carbon–nitrogen bond to produce mixtures of pyridones
and azepinones.2 For example, treatment of t-butyl 2H-azirine-3-
carboxylate with 1-methoxy-3-trimethylsilyloxybutadiene3 (Dani-
shefsky’s diene) afforded the silyl enol ether cycloadduct 1. Upon
prolonged standing at ambient temperature, the silyl enol ether
decomposed to afford the corresponding azepinone-3-carboxylate
ester 2, presumably via the pathway depicted in Scheme 1. It was
later reported by the same group that treatment of analogous cyc-
loadducts with solutions of tetra-n-butylammonium fluoride (TBAF,
1 M in tetrahydrofuran, 0.3 equiv) afforded the same products.1

We wished to take advantage of this strain-relieving ring-
expansion to generate azepinones like 6 and 7 (Scheme 2). After
much experimentation, we found it most convenient to work with
ethyl 2H-azirine-3-carboxylate (3), which we generated by heating
dilute (0.07 M) solutions of ethyl 2-azidoacrylate2b,4 in dichloro-
methane to 150 �C in a sealed vessel for just over one hour (see
Supplementary data for details).5 The resultant solution of ethyl
ll rights reserved.

: +1 808 956 5908.
2H-azirine-3-carboxylate (3) was charged directly with 1-meth-
oxy-3-trimethylsilyloxybutadiene (0.75 equiv) and heated to
80 �C for 40 min to afford the desired cycloadduct 4 in good yield.

We sought a means of inducing the strain-relieving bond scission
(4 ? 6) as part of a one-pot cycloaddition-ring expansion sequence
to access the azepinone directly. We were surprised to find that
treatment of crude or purified cycloadducts 4 and 5 with commercial
solutions of TBAF (conditions previously described by Alves)2d

yielded mixtures of isomeric azepinones. For example, when we
treated the crude cycloadduct 4 with TBAF (1 M in THF, 0.3 equiv),
we observed formation of a mixture of the desired 1H-azepin-
5(2H)-one 6, the isomerized 1H-azepin-5(4H)-one 8 (in which the



Table 1
Isomerization of azepinones
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reagent

THF, 23 °C
6, R = H
7, R = CH3

8, R = H
10, R = CH3

Entry Substrate R Reagenta Conversionb (%)

1 6 H TBAFc 100
2 7 CH3 TBAF 100
3 6 H NaOEt 100
4 7 CH3 NaOEt 70
5 6 H NEt3

d 50
6 7 CH3 NEt3

d <5
7 6 H PPTS 15
8 7 CH3 PPTS 0
9 6 H TsOH 11e

10 7 CH3 TsOH 0
11 6 H TsOHf 20
12 7 CH3 TsOHf Decomp.

a Experiments conducted on 0.1 mmol scale in 1 mL THF with 1 equiv reagent.
See Supplemental data for details.

b Determined by 1H NMR analysis after 20 h reaction time.
c Determined by 1H NMR analysis after 3.5 h reaction time.
d Two equivalent NEt3 employed.
e Determined by 1H NMR analysis after 15 h reaction time.
f Experiment conducted at 60 �C for 6 h.
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Scheme 2. Diels–Alder cycloaddition of 2H-azirine-3-carboxylate ethyl ester (this
work).
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double bond has migrated from C3–C4 to C2–C3), and the Michael
adduct 9 incorporating 4-methoxy-3-buten-2-one in a 1:1:1.3 ratio
(1H NMR analysis).6 We have evidence to suggest the Michael adduct
arises from the conjugate addition of the cycloadduct at nitrogen to
4-methoxy-3-buten-2-one, followed by the strain-releasing bond-
scission of the resultant cation.7 Separating each component of this
mixture by column chromatography proved quite tedious, thus pre-
cluding the use of this procedure for a one-pot azepinone synthesis.

Treatment of the purified cycloadduct 4 with TBAF (0.3 equiv)
yielded the desired 1H azepin-5(2H)-one 6 (17%), and the isomer-
ized 1H-azepin-5(4H)-one 8 as the major product (60%). In the
presence of TBAF in any amount, mixtures of products were ob-
served, however we found the stoichiometry was critical to our
success. The desired azepinone isomer 6 was observed and isolated
upon treatment of the cycloadduct 4 with 0.3 equiv TBAF, provided
the reaction was closely monitored by TLC and purified immedi-
ately upon consumption of the starting material. However, when
the same reaction was conducted with 1.0 equiv TBAF under other-
wise identical conditions, it was difficult to obtain any of the
desired isomer. The rate of fluoride-mediated azepinone isomeri-
zation is competitive with fluoride-mediated ring expansion;
complete consumption of the cycloadduct was observed after
approximately 3 h at room temperature, which is sufficient time
for nearly complete azepinone isomerization to occur. We cannot
rule out the possibility that trace amounts of hydroxide in our
TBAF solutions were responsible for the isomerization, and under
otherwise identical reaction conditions, other milder sources of
fluoride (e.g., TBAF/AcOH, Et3N�3HF, HF�pyridine, HF�acetonitrile,
CsF) did not efficiently induce the desired ring expansion (<10%
conversion was observed in all cases).

After careful study, we noted that the isomerization of 6 and 7
to 8 and 10, respectively, occurred under a variety of basic condi-
tions. Our results are summarized in Table 1. Conversion of 6 to
8 was complete within 3.5 h in the presence of 1 equiv TBAF. Con-
version of 6 to 8 in the presence of stoichiometric sodium ethoxide
proceeded at a much slower rate (complete conversion after
�20 h). Azepinone 7 bearing a C4 methyl group is generally more
resistant to isomerization under the conditions we examined,
and required much longer reaction times to achieve full conver-
sion. Both 6 and 7 proved stable to acidic conditions; very little
isomerization was observed upon treatment of 6 with PPTS or p-
TsOH for several hours.8 We have not observed conversion of 8
and 10 back to 6 and 7 under any conditions we have examined.
It is also noteworthy that thermal isomerization of 6 or 7 does
not occur at an appreciable rate in the absence of base, though
we did observe isomerization of 6 to 8 after prolonged storage
on the bench at ambient temperature.

We chose to use the stability of the azepinones to acidic reac-
tion conditions to our advantage to achieve our goal of a one-pot
azepinone synthesis. While the cycloadducts are indeed isolable
by careful column chromatography (see Supplementary data for
details), we found that prolonged exposure to silica gel cleanly
and efficiently induced the ring expansion.9 After the cycloaddition
was observed to be complete (TLC analysis) in our optimized pro-
cedure, silica gel was added directly to the crude reaction mixture.
The resultant suspension was stirred at ambient temperature
(23 �C) and then filtered to afford the 1H-azepin-5(2H)-one 6 in
good yield (45%) as a single isomer (determined by 1H NMR anal-
ysis of the crude product). This strategy worked well for the
cycloaddition-ring expansion sequence of both 1-methoxy-3-trim-
ethylsilyloxybutadiene and 1-methoxy-3-trimethylsilyloxypenta-
1,3-diene3a,10 with ethyl 2H-azirine-3-carboxylate.

We reasoned that removing the C3-carboxylate might affect the
position of the double bond. To that end, we prepared the azepa-
none 1211 (Scheme 3) from the commercially available N-Boc-4-
piperidone (11). We were able to introduce the desired unsatura-
tion via oxidation of 12 with 2-iodoxybenzoic acid (IBX) in the pres-
ence of 4-methoxypyridine N-oxide to afford the azepinone 13.12

However, treatment of this substrate with either of two different
fluoride sources induced complete isomerization of the double
bond in addition to removal of the 2-(trimethylsilyl)ethyl carba-
mate protecting group to give azepinone 14. The C3–C4 double
bond isomer was not detected. We prepared the corresponding
azepanone-4-carboxylate 15 utilizing the same strategy but we
were unable to introduce the desired unsaturation selectively to
give 16.

In summary, we have developed an efficient one-pot prepara-
tion of 1H-azepin-5(2H)-ones and noted an unexpectedly facile
isomerization of the C3–C4 double bond to C2–C3. The isomeriza-
tion occurs readily under basic reaction conditions, regardless of
substitution, and appears to be irreversible. We are currently
studying the synthesis of new azepinones with a variety of substi-
tution patterns, the effects of basic and acidic reaction conditions,
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and the use of azepinones as nucleophiles at nitrogen and at car-
bon. These studies will be disclosed in due course.
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